If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+7y-5=0
a = 6; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·6·(-5)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*6}=\frac{-20}{12} =-1+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*6}=\frac{6}{12} =1/2 $
| 2x+5x=-14x+x | | 4-2t+t^2=0 | | U^2-5u+3=0 | | 6w^2=19w-8 | | 10y^2-26y=12 | | x×2+12×3=162 | | 1/5a+9=9 | | 4(3x+1)=-3(5x-4) | | 6(2l+3)=78 | | 18x+3=5(3x+1)+3x-2 | | y/5+5=9 | | (5x-1)(x+3)=(x-5)(5x+1)=40 | | 4×7^(4x)=49×2^(2x) | | 7(9-z)÷6=-z | | -6(2x-4)+6=-12x+30 | | 7-x/2=5x-4 | | 2(x+4)÷3=4x-4 | | 12x+16=140 | | 3x^2-3x-23=0 | | x+180-x=180 | | 8x/2+3=x-6 | | (2x^2+5x)^2-10x^2-25x-14=0 | | 9(1-2x)+12(x-3)=7-2(9-5x) | | 7(x+1)-2(3-2x)=9+3x | | 0,5(x-2)=1-(0,2x+1) | | 44÷12+x÷6=4x÷3 | | 2x+16=300 | | 6t+5/7=5 | | 6x-193x+10=180 | | 26-x=-13 | | x÷7=20 | | (x-2)(x+1)=1/2 |